
A Survey of Russian Approaches to
Perebor (Brute-Force Search) Algorithms
B. A. TRAKHTENBROT

Concerns about computational problems requiring brute-force or exhaustive
search methods have gained particular attention in recent years because of the
widespread research on the “P = NP?” question. The Russian word for “brute-
force search” is “perebor. ” It has been an active research area in the Soviet
Union for several decades. Disputes about approaches to perebor had a
certain influence on the development, and developers, of complexity theory in
the Soviet Union. This paper is a personal account of some events, ideas, and
academic controversies that surrounded this topic and to which the author
was a witness and-to some extent-a participant. It covers a period that
started in the 1950s and culminated with the discovery and investigation of
nondeterministic polynomial (NP)-complete problems independently by S.
Cook and R. Karp in the United States and L. Levin in the Soviet Union.

Categories and Subject Descriptors: 1.2.8 [Artificial Intelligence]-graph and
tree search strategies; K. 2 [History of Computing]-people, software

General Terms: Algorithms, Theory, Verification
Additional Key Words and Phrases: brute-force search algorithms, perebor

Introduction

A perebor algorithm, or perebor for short, is Russian
for what is called in English a “brute-force” or “ex-
haustive” search method. Other combinations of
words also occur in translations from Russian, such
as “successive trials,” “sequential searching,” and
“thorough searching.” To keep the historical flavor, I
prefer to preserve in this paper the original term
perebor and use such expressions as ‘perebor prob-
lems” (problems that are solvable by perebor), “im-
possibility of eliminating perebor,” etc.

Example. Consider SAT, the satisfiability problem
for formulas of the propositional logic. (1) Existential
uersion: Given an arbitrary formula A(X1, . . . , X,),
determine whether there exists an n-tuple of truth
values that satisfies A. (2) Constructive uersion: In the

a 1984 by the American Federation of Information Processing
Societies, Inc. Permission to copy without fee all or part of this
material is granted provided that the copies are not made or distrib-
uted for direct commercial advantage, the AFIPS copyright notice
and the title of the publication and its date appear, and notice is
given that the copying is by permission of the American Federation
of Information Processing Societies, Inc. To copy otherwise, or to
republish, requires specific permission.
Author’s Address: School of Mathematical Sciences, Tel Aviv Uni-
versity, Ramat Aviv, 69 978 Tel Aviv, Israel.
@ 1984 AFIPS 0164-l 239/84/040384-400$01 .OO/OO

case of an affirmative answer to (l), an n-tuple should
be produced.

The obvious perebor algorithm that solves both the
existential and constructive versions of the problem
considers all the n-tuples of truth values in some order
(say, lexicographical order). The first time an n-tuple
that satisfies A is discovered, the algorithm stops and
delivers the right result; of course, this could happen
in an early stage of the process. Otherwise, after
unsuccessfully considering all the 2” possible n-tuples,
the negative answer is produced. Clearly, a high price
is to be paid, in general, for the conceptual simplic-
ity-even triviality-of theperebor algorithm, because
the number of cases to be tried grows exponentially
with respect to the number n of propositional varia-
bles. There are many other natural problems, mainly
combinatorial and logical ones, for which perebor al-
gorithms are quite evident. Often, as for SAT, the
problem is to decide if some property under consider-
ation holds for arbitrary inputs of the suitable type.
For example, in the Hamiltonian circuit problem, the
input is graph G, and the property to be checked is
“does G have a simple cycle that goes through all
vertices?” Similarly, for a given family of games, the
p‘roblem arises of determining whether an arbitrary

384 l Annals of the History of Computing, Volume 6, Number 4, October 1984

B. A. Trakhtenbrot l Perebor

game has a winning strategy. In such cases, both the Given A(x,y) as above and a polynomial r,
existential and constructive versions are clearly mean- 1. Existential version. For arbitrary x determine
ingful. Formally, the first one is the decidability prob- whether there exists a y such that A(x,y) is true
lem for some set (i.e., the task of computing a predi- and P(y) I r(P(x)).
cate-the characteristic function of this set), whereas 2. Constructive uersion. In the case of an affirma-
the second deals with the computation of a ‘function. tive answer, produce such a y.

It may happen that the problem solvable by perebor It is immediately clear that SAT turns out to be an
looks somewhat different. Nevertheless, it isoften (but NP problem up to some natural encoding of the for-
not always) clear how to reformulate it (in some sense mulas; moreover, one can manage with the polynomial
equivalently) to the preceding standard. Consider, for r(n) = n. It is also clear that for each NP problem a
example, the following two problems: (1) given a graph solution is available via perebor, as it was for SAT.
G, compute its chromatic number (i.e., the minimum Namely, for a given x0, one has to check A(xo,y) for
number of colors needed to paint each node of the all y of length =r(P (x0)): altogether, about 2’(‘(‘0))
graph so that no two adjacent nodes have the same trials-a number that is exponential relative to P (x0)-
color); (2) given a finite automaton M, minimize it each of which needs only a feasible (polynomial on
(i.e., construct an automaton M’ that is equivalent to P(xo)) computation of A.
M and has the minimal number of states). Here there The notation NP indicates that an affirmative an-
is no explicit decidability problem; instead, the com- swer in the existential version, as well as the value
putation of a total function (mapping) is required. required in the constructive version, can be certified
Again, the solution via perebor is obvious-for exam- by a nondeterministic procedure in polynomial time
ple, for problem 1, check all of the possible colorings as follows: first, guess a correct y and then check in
with two colors, then with three colors, etc. polynomial time that A(x,y) is true. But note that

Of course, for some combinatorial problems of the nothing is said about the complexity of getting a
kinds described (e.g., for the minimization of finite negative answer! Now, as suggested by Cook and
automata), more sophisticated algorithms have been Levin, “eliminate perebor for an NP problem” is to be
discovered that are considerably more efficient than interpreted as “find for this problem a deterministic
the trivial perebor. That is not the case for the other algorithm that works in polynomial time (or, in short,
problems formulated here. Moreover, the experience a P algorithm).” So the “NP = P?” question arises:
accumulated in this area indicates that one cannot “Does there exist for each NP problem a P algorithm?”
expect more efficient algorithms for such problems, The conjectured answer is “No”; in solving the prob-
because in some sense perebor must occur (perhaps lems under consideration, guessing cannot be system-
implicitly) in any algorithm that solves them. This is atically eliminated without some essential exhausting
the conjecture on “the impossibility of eliminating of all possible guesses. This conjecture remains open,
perebor.” Clearly, to attack it one needs a suitable but Cook and Levin discovered the NP-complete prob-
formalization of the intuitive ideas under considera- lems-the most plausible candidates for which no P
tion. Since 1971-1972 there has been a broad consen-
sus in the computer science community about such a
formalization based on the idea of computability and
reducibility in polynomial time. Let us recall the main

,,,
Boris A. Trakhtenbrot was

points about the seminal work of S. A. Cook (1971), born in Brichevo, Moldavia
R. M. Karp (1972), and L. Levin (1973). (then Romania, now

Let x,y, . I . denote binary strings, P(x), P(y), . . . U.S.S.R.) in 1921. He
their lengths, and A(x,y) a predicate that is computa- received his Ph.D. in
ble in polynomial time with respect to P(X) + P(y), mathematical logic and the
Note that the existence of a polynomial upper bound theory of algorithms under
just stipulated does not depend essentially on what P. S. Novikov in 1950 at the
computing model is assumed: Turing machines with institute of Mathematics in
many tapes and heads, random-access machines, etc. Kiev. Until 1960 he was in teaching and research on
Note also that formalization of the intuitive notion computability and automata theory at the Pedagogical
“feasible computation” is widely accepted in terms of and Polytechnical Institutes of Penza. He spent 1960-
polynomial time. Hence, the real intention is to con- 7980 at the Mathematical institute of the Siberian
sider feasibly computable predicates A(x,y). From the Branch of the U.S.S.R. Academy of Sciences and in
vague class of perebor problems one selects the follow- Novosibirsk University. He emigrated to Israel in 1980
ing well-defined subclass of perebor problems, called and is professor of computer science at Tel Aviv
nondeterministic polynomial (NP) problems. University.

Annals of the History of Computing, Volume 6, Number 4, October 1984 l 385

B. A. Trakhtenbrot l Perebor

algorithm exists. By definition, an NP problem Q is machines. . . . We started reading about [them] in
complete if and only if (iff) for each other NP problem 1962.. . . The beauty and simplicity of the concept
R there exists a mapping of binary strings f such that impressed us deeply.

1. f is computable in polynomial time. For many people in the Soviet Union (including
2. For each X, the answer for x: is affirmative in R myself), the situation was different. We started solely

iff the answer for f(x) is affirmative in Q. with a background in mathematical logic and the
Hence, if there exists in general some NP problem theory of algorithms before joining computer science.

(even if artificially formulated) that is not solvable by Research in the theory of algorithms began soon after
P algorithms, this is the case for the NP-complete World War II almost simultaneously under P. S. No-
problems as well. By the way, SAT and a lot of other vikov (Steklov Mathematical Institute in Moscow),
classical combinatorial problems are NP complete. So A. N. Kolmogorov (MOSCOW University), and A, A.
if perebor is inevitable in solving any particular prob- Markov (Leningrad University). The first generation
lem in NP, it is surely inevitable for SAT. Because of “theoretical cyberneticians” was educated in these
the “NP = P?” question has so far resisted all attacks, traditions and was considerably influenced by them.
a new trend of reseach has appeared dealing with the Therefore the interest in switching theory, automata,
challenging question (Hartmanis and Hopcroft 1976): boolean functions, etc., never did mean a break with
“Is ‘NP = P’ in general provable or refutable in the effective computability topics; the 1960s marked in
frame of reasonable formal theories?” some sense a return to the theory of algorithms.

The whole story belongs-if one may say so-to the Even a superficial examination of the titles in the
post-NP period that was started by the discovery of References shows that in each of the two pre-NP
Cook and Levin (and who knows when it will be over!). periods the impossibility of eliminating perebor was
As to this paper, it is mainly a survey of the pre-NP explicitly proclaimed as a proved fact-the first time
period in the Soviet Union, in particular of the events by Yablonski (1959a) and the second by Dekhtiar
to which I was a witness and to some extent a partic- (1969). Less explicit claims of this sort could be found
ipant. This period may be divided into two parts. in other papers as well. It is clear that at that time

1. The first part was from the early 1950s until there were accepted formalizations of perebor prob-
the 1960s. At that time a large spectrum of research lems and of the perebor conjecture that were different
was started, the development included switching the- from the P = NP problem. As a matter of fact, in both
ory, minimization of boolean functions, automata, of the pre-NP periods not only was perebor an active
program schemes, coding, etc. Nowadays, these activ- topic of research, but it also influenced the develop-
ities would be classified as “theoretical computer sci- ment and developers of complexity theory. Some ideas,
ence,” but at that time we used the more general and results, and controversies of these periods will be
vague rubric “theoretical cybernetics.” Complexity surveyed in the following sections.
theory was essentially investigated in connection with In many respects, research in the field of complexity
switching circuits-and so was the perebor topic. theory was performed independently in the U.S.S.R.

2. The second part began in the 1960s when there and in the West, and sometimes the results were
was intensive development of algorithmic complex- similar. Even in these cases, however, the primary
ity-that is, of computational complexity and com- motivations and stimuli were sometimes different,
plexity of finite objects by means of the theory of especially for perebor. Hence there was some diver-
algorithms. Accordingly, some new approaches to per- gence in the chronology of events and in their influ-
ebor appeared. ence. For example, during almost all of the pre-NP

In his Annals paper describing related research at period, some versions of a special task related to
the same time in the United States, Hartmanis (1981, minimization of circuits (see Tasks 4 and 5 in Sections
pp. 44, 46) wrote: 1 and 2) were considered as the main models for which

My thinking was very strongly influenced by Claude presumably it would be impossible to manage without
Shannon’s work.. . [which] suggested to me that there perebor. In contrast to SAT, they were not proved to
may be a quantitative theory of computing.. . . We must be NP complete, and most likely they are not! In this
be able to measure the “computing work” done in sense, to persist with them might have looked like a
computing and classify computations by their false strategy. On the other hand, these tasks helped
complexity. to define the developing area of complexity theory,
That is just what was happening with my colleagues and they especially called attention to problems con-

and myself! Hartmanis goes on. cerning the role of sparse sets, oracles, immunity,
During the late 1950s my colleagues. . . and I knew very frequency algorithms, probabilistic algorithms, etc.
little about effective computability and Turing (Trakhtenbrot 1973a; 1975).

386 l Annals of the History of Computing, Volume 6, Number 4, October 1984

Section 1 of this paper deals with the 195Os, espe-
cially with the first attempt by Yablonski to formalize
and to prove the perebor conjecture and with the
controversies stirred by this attempt.

Section 2 is a superficial survey of the investigations
in algorithmic complexity in the U.S.S.R. that created
a background for new approaches to perebor or were
influenced by it.

Section 3 deals with some attempts to formalize the
perebor phenomena in the framework of the theory of
algorithmic complexity that preceded Levin’s discov-
ery and to some extent promoted it.

Of course, investigations on perebor do not neces-
sarily need complexity theory, just as elaboration and
analysis of algorithms may not involve the theory of
algorithms. In both cases, the conceptual framework
of the theory is relevant when negative results are
expected-for example, the inevitability of perebor,
the nonexistence of an algorithm, etc. On the other
hand, when the aim is to obtain positive results, one
can manage with direct constructions and ingenious
tricks, for which the preceding conceptual framework
is irrelevant. Although a review of activities of this
sort in the U.S.S.R. is beyond the scope of this paper,
I will make a few comments on related work.

Tasks arising from game-playing programs and lin-
ear programming were always a source of inspiration
as to how one might compete with perebor. The book
by Adelson-Velski et al. (1976) is a nice account of the
investigations on this topic and reflects the essential
contributions of the authors. Their main philosophy
is formulated as follows: “One does not fear theperebor
but rather uses it reasonably via a realistic estimation
of the dimensions of the disaster it may imply.” In the
frame of this general approach, effective methods (in-
cluding heuristics) of cutting down exhaustive search
through all a priori possibilities were created. In gen-
eral, these methods do not always give evidence of
correct results within feasible (say, polynomial time)
computations; nevertheless, they are useful and inter-
esting in both theoretical and practical aspects.

Because of its practical importance, linear program-
ming was investigated for a long time by representa-
tives of many generations, who contributed to the
elaboration and improvement of the respective algo-
rithms. The main task happens to be an NP problem:
Given a system of linear inequalities with integral
coefficients, (1) Existential uersion: Decide whether it
is solvable; (2) Constructive version: If it is solvable,
exhibit a solution. In Karp (1972) this task is listed
among the most important NP problems that are not
known to be complete.

Khachijan (1979), relying on the contributions of
his predecessors (especially A. Nemirovski and B.

B. A. Trakhtenbrot - Perebor

Yudin), formulated explicitly a polynomial-time al-
gorithm for the linear programming task. Thus it
turns out that in one of the most famous perebor
problems, one can nevertheless avoid perebor.

Section 1. The Cynbernetic Period

From the very beginning of the 195Os, activities in
theoretical cybernetics were energetically promoted in
the U.S.S.R. by A. A. Liapunov and S. V. Yablonski.
For about two decades earlier, Liapunov had closely
collaborated with P. S. Novikov in the area of set
theory, but now he was mainly attracted by the theory
of programming, formal linguistics, and the mathe-
matics of biology. Yablonski finished his Ph.D. disser-
tation under Novikov on the topic of completeness
criteria for boolean and many-valued logics. He be-
came interested in such topics as representation of
boolean functions by switching circuits, minimization
of disjunctive normal forms, coding, automata, etc.
The seminars of Liapunov and Yablonski at Moscow
University attracted many students and scholars and
soon became important centers of research in these
new and exciting areas. At that time, after completing
my Ph.D. under Novikov, I held a position in the
Pedagogical Institute of Penza, a provincial city east
of Moscow, and I was happy to join the cybernetics
community through correspondence and visits to Mos-
cow. The general atmosphere within this fresh and
energetic community was very friendly, and I bene-
fited much from it.

Clearly, minimization of circuits and disjunctive
normal forms, choice of optimal codes, etc., become
trivial tasks as soon as perebor is allowed. It is there-
fore not surprising that the perebor subject came to
light, especially in connection with Shannon’s work
on the complexity of switching circuits. I learned about
this work in a detailed letter from Yablonski, who
informed me about the seminar. This episode is char-

t Input ---f

X R Y x

Y

cl-:;:::

Y P X Y

t output -+

Circuit Q, Circuit f12

Figure 1.

Annals of the History of Computing, Volume 6, Number 4, October 1984 * 387

B. A. Trakhtenbrot l Perebor

acteristic of the kind and thoughtful relations within fact, by means of some refinedperebor, the values L(2)
the cybernetics community at that time. Let me recall = 4, L(3) = 8, L(4) = 13 were computed, but L(5) is
some notations and facts concerning this topic. still unknown. On the other hand, Shannon’s theorem,

A switching circuit Q is essentially an undirected later improved by Lupanov (1958), states:
graph labeled by boolean variables and their nega-
tions, with a designated input and a designated output L(n) - ; (1)
vertex, as in Figure 1. The paths in Q from its input
vertex to the output vertex induce conjunctions of where “-” means asymptotic equivalence.
variables and/or their negations. Hence the whole Since the function an/r2 is easy to compute, no
circuit is associated with a boolean function-the dis- perebor is needed in the first version of Task 2 if the
junction of these conjunctions. This function is said asymptotic approximation of L(n) is allowed instead
to be realized by the circuit; for example, for the of its exact value. For the second version of Task 2, it
circuits RX and R2 from Figure 1, the associated dis- is not clear how to manage without perebor even in
junctions of conjunctions are, respectively, the less strict case when an f is to be produced with

xy V Zji and yx V yyji V 27x V 53 L(f) merely close to L(n).
From 1953-1954 Yablonski emphasized the conjec-

Therefore, they realize in fact the same function, ture that even in this less strict case and in some other
which is tabulated in Figure 2. As usual, a boolean
function of n arguments will be identified with a

related tasks, the use of perebor is inevitable. Finally,
he claimed the proof of the conjecture (Yablonski

binary string of length 2”-namely, the value column 1959a). Before we continue this topic, let us recall
in its table (in this case, the string 1001). Additional some details concerning Shannon’s lower bound for
notations are: L(n).

a(Q) The function associated with (realized by) Let P;(n), P,‘(n) partition P(n) into “simple” and
the circuit Q.

L(Q) The complexity of circuit Q (i.e., the number
“complex” functions-specifically,

of edges in the graph).
L(f) The complexity of the function f (i.e., min

f E P;(n) w L(f) < z (1 - e)

W(Q) : @(Q) = fl). and

P(n) The set of all boolean functions of n argu- f E P,‘(n) w L(f) L ; (1 - I)
ments.

L(n) max (L(f) : f E P(n)]. Let IVI denote the cardinality of a set V.
The following tasks arise quite naturally. Then, for each fixed E > 0, as n + ~0

Task 1. Given an arbitrary Boolean function f(xl,
GA

IP;(n)l IWn)l --, 1 . . .) + 0 and - (2)
1. First version. Compute L(f), the complexity of IP(n)l @Yn)l

the function f. Hence each I > 0 induces a splitting P, , PZ of the
2. Second version. Find a minimal circuit Q that set of all boolean functions, where P; z v P;(n) is

realizes f; that is, @(a(Q) = f and L(Q) = L(f). the “thin” set of “simple” functions, and
Task 2. Given an arbitrary natural n, Pa z K P,(n) is the “thick” set of “complex” func-
1. First version. Compute L(n). tions.
2. Second version. Find an f E P(n) such that L(f) There is some gap between the technical results of

= L(n). Yablonski’s 1959 papers (1959a; 1959b) and their
Clearly, Task 1 is solvable by perebor through the interpretation concerningperebor. Since these circum-

set of circuits ordered with respect to their complexity, stances stirred both interest and controversy, I shall
and so is Task 2 by an additional perebor through all try to reproduce the main points as accurately as
the 2”” functions belonging to P(n). As a matter of possible; the interested reader is urged to consult the

original texts if needed. Yablonski considered the fol-
lowing task.

X Y W,Y) Task 3. Construct a sequence MO of boolean func-
0 0 tions
0 A

:,
fad, f%l&), * . * , f0,(3tl,X% . . . , XJ, . . - (3)

1 0
1 1 1 such that for some subsequence

Figure 2. Table of the function realized by both Q1 and QZ. uft,mnk) + 1 (4)

388 l Annals of the History of Computing, Volume 6, Number 4, October 1984

holds.
Clearly, this is the same as to require that for each

&>O
M” f-l P: (4’)

is infinite.
Note that Task 3 is a weaker form of Task 2 (second

version), and therefore its solution by perebor is ob-
vious. As for a solution of Task 3 without perebor,
Yablonski considers first the case in which one allows
algorithms with random steps. Suppose that for each
rz one constructs a function f(xi, . . . , x,) by throwing
a regular coin to obtain a string of length 2”, which is
taken as the value column of the function. Then an
accurate estimate of the ratio IP;(n)l/lP(n)l in Shan-
non’s theorem results in the following theorem.

Yablonski’s Theorem. With probability 1, the se-
quence of boolean functions obtained by the probabilistic
algorithm above satisfies the conditions of Task 3.

The interpretation is that probabilistic algorithms
are able to solve Task 3 without perebor. For deter-
ministic algorithms, Yablonski proposes that one need
consider only algorithms satisfying some properties
particularly connected to the Task 3 under consider-
ation. These properties come from the argument that
as soon as a circuit is constructed for some boolean
function f, one can assume that implicit realizations
are available for all functions obtainable from f by the
following operations.

1. Inserting and/or deleting dummy arguments.
2. Permutation of arguments.
3. Substitution of constants for some of the argu-

ments.
Definition 1. A class of boolean functions is inuar-

iant iff it is closed under operations l-3.
According to this motivation, the reasonable restric-

tion to be imposed on algorithms for Task 3 is reflected
in:

Definition 2. An algorithm is regular iff it maps
the set of natural numbers onto an invariant class of
boolean functions. Then the main result is formulated
as follows.

Main Theorem. Each regular algorithm that con-
structs a sequence MO (as required by Task 3) con-
structs, in fact, all the boolean functions; such an algo-
rithm is in fact a perebor of all the boolean functions.

Since Task 3 requires exactly one function of n
arguments for each n, the formulation above could
seem inaccurately stated because each sequence that
is closed under the operations of inserting and deleting
dummy arguments will violate the italicized condition
above. In fact, the assertion is about algorithms that
construct the invariant closure of MO; the point is:

the invariant closure of MO must contain
all boolean functions (5)

B. A. Trakhtenbrot l Perebor

The intuition behind Yablonski’s interpretation of
(5) is that any algorithm solving Task 3 must, in the
process of generating MO, examine all the functions in
the invariant closure of MO and therefore is doing
perebor.

Yablonski’s result aroused mixed~ feelings and re-
actions. On the one hand, the impression was that
some evidence (perhaps indirect) was given to the
validity of the perebor conjecture. Moreover, since
then many people (mainly his former students) were
categorical in their opinion and made public declara-
tions to the effect that Yablonski’s work was genuine
proof of the perebor conjecture with respect to the
task under consideration. On the other hand, there
was criticism, and after some confusion this was my
attitude as well. Even if we accept the hypothesis that
an algorithm for Task 3 must in some sense “examine”
all of the functions in the invariant closure, there is
still an objection to Yablonski’s interpretation of (5):
namely, perebor is an intuitive concept that seems
clearly related to the difficulty of searching a large
domain in a short time, and property (5) says nothing
about the rate at which the boolean functions are
“examined.” Indeed, it is easy to construct sequences
satisfying (5) that are generated very rapidly-there
is a Turing machine that prints out (the value column
of) fn(%, . . * , x,) (of length 2”) for n = 1, 2, . . . at the
rate of one bit per step, where

fibA f&l, GJ, * - - , fn(% GA - * - (6)

satisfies (5). So if property (5) is to be interpreted as
implying perebor, we have found an easy way to do
perebor-and this contradicts the essential idea that
perebor is what is not easy to do.

The main theorem is in fact contained in the follow-
ing technical result of the paper.

Let Q be an invariant class, Q(n) its subset consisting
of n argument functions, and

Ldn) E max L(f) for f E Q(n) (7)

Then either Q is the set of all the boolean functions, or
else

L&)
2”

- a .---n for some constant 0 5 u < 1 (8)

Note that in this formulation, no algorithm is men-
tioned at all!

The lack of direct connection between Yablonski’s
result (8) and the feasibility of algorithms for Task 3
looked somewhat strange, although the algebraic ar-
guments (such as invariance) that led to interpreta-
tions concerning perebor were not contested. In this
context the paper of Yablonski’s student, Y. Zhuravlev
(1960), is worth noting. Again, the title is about the

Annals of the History of Computing, Volume 6, Number 4, October 1984 l 389

B. A. Trakhtenbrot l Perebor

impossibility of solving some tasks by algorithms of a
certain class. Unfortunately, the definitions in this
paper are cumbersome, and I cannot discuss them
here. Although perebor is not emphasized in the title
nor in the text, some comparisons with Yablonski
(1959a; b) are suggested. First, the tasks under consid-
eration concern minimization of disjunctive normal
forms; their trivial solutions by perebor are obvious.
Second, locality conditions imposed on the allowed
algorithms restrict access to information stored on the
nodes of a graph, so that a thorough scan over the
nodes of the graph is needed to collect the information.
Finally, it has been hinted that this forced scanning
gives evidence that perebor is inevitable. Therefore
Zhuravlev’s approach could almost be given the same
perebor status as Yablonski’s.

Discussions focused on Yablonski’s approach for
two reasons.

1. The explicit and persistent claim that Yablon-
ski had proved the perebor conjecture; as a matter of
fact, that was mirrored in the title of the paper (Ya-
blonski 1959a).

2. The tasks of circuit minimization seemed to be
more fundamental than minimal normal forms. Peo-
ple were fascinated by some peculiarities of circuit
size; indeed, for a long time these peculiarities inspired
the research on perebor phenomena and related com-
plexity problems.

Let me explain in more detail the second point with
respect to modification of Tasks l-3 that naturally
came to light during the discussion. Suppose for a
given E, we consider as in Shannon’s theorem the
splitting into thin P; and thick P,‘.

Task 4. For a given f,
1. Existential version: Determine whether f E P,.
2. Constructive version: If f E P,, produce a suit-

able Q with L(Q) 5 (1 - e)(2”/n).
In other words, the existential version of Task 4 is

the decision problem for P, (and in fact for PZ as
well). As before, the trivial solution is by perebor, and
no way is known for doing it more efficiently. There
seemed to be an additional reason to pay special
attention to this task: because of the following “fre-
quential and immunity effect” of the splitting
P:, P,‘. On the one hand, there exist infinite subsets
M” of the thin P; that are decidable by efficient
algorithms; for example, ME z

{Xl, Xl A x2, x1 A x2 A x3, . . . 1

is decidable in real time by a finite automaton. On the
other hand, the decision problem for the thick P,’
looks difficult (presumably because perebor is inevi-
table, and the intuitive feeling is that the same holds

for each infinite subset of P,‘. Recall that in recursion
theory an infinite set is called immune if it does not
contain any infinite recursive subset. Hence, by anal-
ogy, the property of the thick set P,’ not to contain
any “easily decidable” infinite subset could be char-
acterized by some sort of immunity. This contrast
between the thin but perebor-free (in the sense of
including easily decidable infinite subsets) P: and the
thick but eventually immune P,’ looked impressive
and close to the essence of the problem. That is why
Task 4 received special attention and for a long time
was the main source of reflection on perebor. In par-
ticular, it stimulated the search for alternatives to
perebor via probabilistic and frequential algorithms
that could utilize the density properties of the split-
ting.

Section 2. Algorithmic Complexity

The events discussed in this and the next sections
occurred in a decade that was remarkable in many
aspects. In 1960 I moved to the Akademgorodok, the
Academic Center near Novosibirsk, where, through
the initiative and guidance of A. A. Liapunov, the
Department of Theoretical Cybernetics was organized
within the Mathematical Institute. Almost all the staff
of the department were former participants in the
Moscow seminars, mainly students of Liapunov and
Yablonski. In general, the research areas were sched-
uled in close collaboration with the Moscow group. In
particular, research focused on complexity theory and
related problems that had previously undergone rapid
and intensive development under the influence of
Shannon’s switching theory. Just at this time, a new
approach to complexity problems, manifested as a
fusion of combinatorial methods inherited from
switching theory with the conceptual arsenal of the
theory of algorithms, was also rapidly developing. In
fact, two trends were developing: computational com-
plexity and the complexity of algorithms.

The first subject deals with the amount of compu-
tational work that is expended in performing an al-
gorithm. Typical measures of this complexity are func-
tions such as time complexity t,&x) (the number of
steps performed by an algorithm M on input x), and
space complexity So (the size of memory the algo-
rithm consumes when applied to input x). The second
subject deals with the size of the algorithms (pro-
grams) themselves; as in circuit complexity (but unlike
computational complexity), the size is measured by a
number-for example, the number of symbols in the
program. As these trends were developing, my belief
was growing that they would yield a natural basis for

390 l Annals of the History of Computing, Volume 6, Number 4, October 1984

B. A. Trakhtenbrot l Perebor

the investigation of the perebor phenomena. More-
over, my interest in computational complexity and the
choice of special research topics were to some extent
influenced by reflections about perebor. Although I
have neither the intention nor the possibility to go
fully into details about the development of complexity
theory in the U.S.S.R., this is the right opportunity to
make some points concerning the subject.

First, investigations in computational complexity
appeared in the U.S.S.R. as early as 1956-that is,
earlier than in the West. G. S. Tseitin, then a 19-year-
old student of A. A. Markov at Leningrad University,
began to study the time complexity of Markov’s nor-
ma1 algorithms and proved nontrivial lower and upper
bounds for some concrete tasks. He also discovered
the existence of arbitrarily complex O-l-valued func-
tions (Rabin’s 1960 results became available in the
U.S.S.R. in 1963). Unfortunately, these remarkable
results were not published by Tseitin and appeared
later without proofs in a survey (Yanovskaia 1959).
Independently, I considered “signalizing functions”-
a version of space complexity for computations of
recursive functions (Trakhtenbrot 1956). Neverthe-
less, these episodes did not receive any serious contin-
uation and development until the 1960s.

In May 1962, I met Y. M. Barzdin for the first time.
After graduating from the Latvian University in Riga,
he came to Novosibirsk as my postgraduate student
in automata theory. He quickly became my friend and
main partner in research on computational complex-
ity, and soon other people joined us, mainly students
of the Novosibirsk and Latvian universities. This is
how research on computational complexity started in
Novosibirsk; a new young generation arose, and I had
the good fortune to work with these people over a long
period. It is not surprising that we were attracted by
the same problems as our colleagues in the West (of
course, we were working independently and in paral-
lel), and we worked out almost the same techniques:
complexity measures, crossing sequences, diagonali-
zation, gaps, etc. All of these ideas arose quite natu-
rally; we became most excited, and they evoked in us
enthusiasm similar to that described by Hartmanis in
his historical account (1981).

On the other hand, we were upset by the deteriora-
tion in our relations with the “classical” cybernetics
people, mainly Yablonski. Their attitude to the intro-
duction of the theory of algorithms into complexity
affairs was quite negative. The main argument they
used was that the theory of algorithms is essentially a
theory of diagonalization, and therefore is alien to the
complexity area that requires combinatorial construc-
tive solutions. Hence they distrusted the role that

could play in the perebor subject. These scientific
divergences were likely intensified by the perebor con-
troversy, especially because at that time Yablonski
attained influential positions in the bodies that dealt
with coordination and control of mathematical inves-
tigation.*

In the summer of 1963, during a visit by A. N.
Kolmogorov to the Novosibirsk University, I learned
in more detail about his new approach to the com-
plexity of finite objects and the development of the
concepts of information and randomness by means of
the theory of algorithms. In the early cybernetics
period, it was already clear that the essence of the
problems with the minimization of boolean functions
did not depend essentially on the particular models of
switching circuits that were used to compute them;
any other natural class of “schemes,” and ultimately
any natural coding of finite objects (say, finite texts),
should be expected to exhibit similar phenomena.
Now, unlike the former pure combinatorial ap-
proaches, the discovery by Kolmogorov (1965), and
independently by Solomonoff (1964) and Chaitin
(1966), of optimal coding for finite objects happened
in the framework of algorithm and recursive function
theory. According to this theory, the complexity of a
text x is to be interpreted as the length of the shortest
binary string p containing all the information that is
necessary for recovering x with the help of some fixed
decoding algorithm. Another related approach was
developed by Markov (1964) and Kuzmin (1965).
What seemed to be especially exciting was the inter-
action of these ideas with the perebor tasks-mainly
with Task 4 from Section 1.

First, let us recall in more detail some notations and
facts. Given a computable mapping (apartiul recursive
function) u of binary strings (codes) into binary
strings (texts, finite objects), the complexity K,(X) of
x with respect to the decoding algorithm u is defined
as

K
u

(x) = Jmin P(P), uo?) = x
100, if such a p does not exist (9)

Each p for which u(p) = x holds is called a code or
program by means of which u recovers X. For example,
the complexity L(f) of a boolean function f as defined
earlier corresponds essentially to the decoding algo-
rithm that recovers boolean functions from circuits.

* This was a time of rapid degradation of the moral climate within
the Soviet mathematical community, which also affected the “com-
putational complexity” people. Among many examples, Levin was
denied his Ph.D. on the basis of political accusations. Dekhtiar’s
Ph.D. award was seemingly plagued by anti-Jewish feelings: the
dissertation was failed, although this decision was reconsidered after
protests by prominent mathematicians. Barzdin’s doctorate was
obstructed for many years because he didn’t share some of the

computational complexity and algorithm complexity scientific preferences of Yablonski.

Annals of the History of Computing, Volume 6, Number 4, October 1984 l 391

9. A. Trakhtenbrot - Perebor

Clearly, this definition strongly depends on the par- First (a minor point), the complexity measure L(f)
titular decoding algorithm. The following remarkable takes into consideration only the number of edges in
fact (by Kolmogorov and Solomonoff), however, per- the graph, deliberately ignoring its topology. There-
mits an invariant definition of complexity in algo- fore, in contrast to JJ;, which refers to the length
rithmic terms. P(X), in the definition of P, the size 2”/n is used

There exists a partial recursive (PR) mapping u0 instead of 2”, the length of the value column for f(xl,
(called optimal) such that for any other partial recur-, . . . , x,).
sive mapping u The second point is the essential one. In the switch-

Ku,(x) 5 K,(x) + constu (10) ing model (as in other known combinatorial models),

Hence, up to additive constants all optimal codings
the decoding @ (unlike the invariant decoding u,) is a

are equivalent. Suppose that some optimal coding u0
total computable function; moreover, it is easy to com-

is selected once and for all; one defines invariantly
pute. As a consequence, the complexity L(f) is com-

(up to an additive constant) the complexity of x to be
putable, while K(r) is not. Hence, in Task 4 and in
its genuine analogies, one should expect “immunity”

K(x), omitting the subscript uO.
Now let us adapt to our notations some facts proved

to mean “hard computability” of all the subsets in-
stead of failure of recursive enumerability. The remedy

by Kolmogorov that sound like a natural counterpart
of the phenomena concerning perebor we discussed in

was to consider complexity with respect to decoding

Section 2. They confirm both the significance of Task
functions of bounded complexity; for example, for a

4 and the belief that Kolmogorov’s invariant algo-
given total computable function g and complexity

rithmic approach was on the right track for theperebor
measure p (say time or space), the related complexity
is

topics.
Fact A. K(x) I P(x) + const E(x) z min {P(p) :.u(p) = x A pubI 5 g@)l(ll)

Fact B. Consider the splitting r]: f’, fl; induced by Again, invariant complexity and a suitable splitting

x E ng z K(x) 5 (1 - E) P(X)
a;, 7rz can be considered where

7r, = (x : Kg, (x) 5 (1 - E) P(X)] 02)
Then fl; is thin and nc+ is thick (in the same sense

as for the splitting P:, Pa in Task 4). Then the analog of Task 4 will look as follows.

Fact C (Immunity). Let f be an arbitrary total Task 5.

recursive mapping from natural numbers into natural 1. Existential version. For arbitrary x decide

numbers, such that whether x E ?r;,

lim sup f = co 2. Constructive version. If the answer is affirma-

Then the set
tive, produce a code p that verifies it.

Our Novosibirsk-Riga group maintained a perma-
A Z Ix I K(x) 5 f(P(x))) nent interest in algorithms and randomness. This

is recursively enumerable, and if its complementary interest was partially inspired by the investigations of

set 1A is infinite, it does not contain any infinite perebor in the cybernetics period.

recursive subset. In particular, II, is immune. Many algorithmic problems encounter essential dif-

Fact D. Let MO be an infinite sequence of binary ficulties (nonexistence of algorithms or nonexistence

strings of feasible ones), so the natural idea arises to use
devices that may produce errors in certain cases. The

Xl, x2, . . *) xn, . . . only requirements are that the probability or fre-
such that K(x,) / P (x,) + 1. Then the closure of MO quency of the errors not exceed some acceptable level
by including all substrings of strings in M” coincides and that the procedures are feasible. In the framework
with the set of all binary strings. of this general idea, two approaches caught our atten-

Clearly, the first three facts exhibit a precise version tion: probabilistic algorithms and frequential algo-
of the somewhat vague “frequential effect” and “im- rithms. It is assumed here and later that in the prob-
munity phenomenon” that came to light in connection abilistic case a device that produces zeros and ones
with the perebor Task 4. Further, Fact D is nothing with equal probabilities is available. Leuw, Moore, and
but a version of Yablonski’s main theorem formulated Shannon (1956) defined the notion of probabilistic
in general terms of optimal coding instead of special algorithms and proved the negative answer for the
coding (of boolean functions) by switching circuits. question: “Is it possible to compute by a probabilistic
Side by side with these analogies, the following pecu- algorithm a function that is not computable by com-
liarities of the switching model are worth noting. mon (deterministic) algorithms?”

3% l Annals of the History of Computing, Volume 6, Number 4, October 1984

B. A. Trakhtenbrot l Perebor

Frequential algorithms are suggested by the “fre- As the proof is a straightforward consequence of the
quential effect” related to the perebor Tasks 4 and 5. thickness of P: (that is, of the fact that
For example, the solution of Task 4 (existential ver- I P,‘(n) I / I P(n) I + l), it can be applied as well to
sion) can be approximated (with practically no com- the set flz from Fact C. Therefore, obviously, 3 a
putational work) with limiting frequency 100 percent probabilistic algorithm M such that tl E > 0, it is true
by always returning the answer “No.” that

The essential features of a frequential algorithm M
M enumerates with probability 1 a set MO of strings

are generally as follows.
1. M is deterministic, but each time it is applied,

such that

it consumes a whole suitable sequence of inputs M” fl HZ is infinite (14)
instead of an individual one and works out the

Because the sets I’Ic’ are immune (see Fact C), it
corresponding sequence of outputs.

2. The frequency of the correct outputs must ex-
seems that the concern should be with the more subtle
question: “Is it possible to enumerate probabilistically

teed a given level.
Clearly, varying the specification of suitable se-

an infinite set M” that satisfies MO C I’Iz instead of
1 M” n n ,’ 1 = ccl? It turns out that all of the nz are

quences and the acceptable frequency level, one can
get different models of frequential algorithms. From

among the immune sets R for which Barzdin’s theorem
holds. Hence, in fact, Ve > 0, V 01> 0, 3 a probabilistic

one survey (McNaughton 1961) I learned about such
a peculiar model and soon realized that as in the

machine M such that

probabilistic case, it is impossible to compute func- M enumerates with probability > CY an infinite
tions that are not computable in the usual sense. Our
efforts were then attracted by the following questions.

subset MO C nZ (15)

1. Is it possible to compute some functions by I should like to summarize the preceding discussion
means of probabilistic or frequential algorithms as follows. The investigations in the cybernetics period
with less computational complexity than deter- put forward three main facts concerning the perebor
ministic algorithms require? topics with respect to switching circuits: (1) the fre-

2. What reasonable sorts of problems (not neces- quential immunity effect, (2) the avoidance of perebor
sarily computation of functions) can be solved via probabilistic algorithms, and (3) Yablonski’s per-
by probabilistic or frequential algorithms more ebor interpretation of regular algorithms.
efficiently than by deterministic ones? Do prob- The algorithmic approach to complexity placed
lems exist that are solvable by probabilistic or them in their proper perspective. It turned out that
frequential algorithms but not by deterministic they reflect some interesting phenomena related to
algorithms? optimal coding of finite objects; but by themselves

Papers by Trakhtenbrot (1973) and Barzdin (1969; these phenomena do not yet imply any conclusions
1970) give some idea about the investigations in these concerning the perebor conjecture. Hence, the further
areas and contain further references. Here I shall investigation of the conjecture in the framework of
confine myself to quoting one theorem by Barzdin algorithmic complexity seemed to be a vital question.
illustrating that for some formulations of problems
one can achieve more with probabilistic machines than Section 3. Perebor and Complexity
with deterministic ones. This theorem is based on a
precise definition of the statement, “A machine M The development of algorithmic complexity created a
that enumerates with probability p a set that has the favorable background for alternative approaches to
property Q.” It claims: “There exists an immune set the perebor topics. The general idea was that one has
T such that for any CY < 1 there exists a probabilistic to take into account the computational complexity of
machine M that enumerates with probability > 01 an perebor algorithms. Therefore, the inevitability of per-
infinite subset of R.” ebor should mean the nonexistence of algorithms that

Let us examine the relation between this theorem are essentially more efficient. Of course, this general
and Yablonski’s probabilistic approach to the elimi- idea does not determine beforehand some other im-
nation of perebor in Task 3. Recall that Yablonski’s portant details; for example: (1) What complexity
theorem essentially claims that 3 a probabilistic al- measure is to be preferred-time complexity, space
gorithm M such that V c > 0, it is true that complexity, or something else? (2) The complexity of
M enumerates with probability 1 a set MO of boolean what kind of computation has to be estimated-an
functions such that absolute computation or a relative one (i.e., a reduc-

M” n PZ is infinite (13) tion)? (3) What should be the meaning of the claim

Annals of the History of Computing, Volume 6, Number 4, October 1964 l 393

9. A. Trakhtenbrot l Perebor

that one algorithm is essentially more efficient than in practically no space or time with frequency ap-
the other? proaching one by a constant function equal to one. It

It is not surprising that in the period under consid- is worth noting that Meyer and McCreight found
eration, there were different attempts to explain per- similar results (1971). They related these results to
ebor phenomena in terms of computational complex- the construction of pseudorandom sequences, as was
ity, The first one (Trakhtenbrot 1965) deals with space also done independently by Agafonov (1969). In my
complexity; the aim of the paper is explicitly declared paper, the main point was in the following conclusion.
in the introduction. Given a space function Cp and a thin regular set R of

Their main meaning-and this is just reflected in the binary strings, there exists a recursive set of binary
title [“Optimal Computations and Yablonski’s
Frequential Effect”]-is in their relation to a general

strings r’ that satisfies the conditions:
1. l?+ is thick.

phenomenon to which Yablonski was the first to pay
Yablonski elaborated a special system of

2. Its complementary set I‘- includes R as a subset.
attention.. . . 3. Cp is optimal on l?+. notions (invariant classes of boolean functions, regular
algorithms, etc.) . . . and proved important theorems in In other words, although I’- is thin, it contains an

which one can find some indirect confirmation of his easily decidable subset-namely, the regular set R-

conjecture with respect to the concrete model he whereas the thick complementary I’+ is P-immune.
considered. . . . Further, the comparison of the splitting I”, T- with

In this paper another approach is suggested which is the splitting P,“, P; in Task 4 is suggested.
based on the estimate of computational complexity,

It is easy to see that there exists a Turing machine specifically-of space-complexity. The paper does not
M contain results that directly affect the concrete model of perphor, that works as follows: given a string of length 2”

Yablonski; it rather establishes (by suitable on its tape (i.e., the code of a boolean function

diagonalization) the existence of such models, for which f(G, . . . ,xn)), Mpszrrbor computes on the same zone of the

even some generalized form of Yablonski’s conjecture tape the value L(f) by the trivial perebor, and checks if f

holds. belongs to P;. This fact could be interpreted as a

The technical results of the paper are about con- confirmation of Yablonski’s conjecture, because the

structions of O-l-valued functions (predicates) I’(X),
space-complexity %‘,,c376,b,r of Mperrbor is indeed optimal on
P:. However in this case, such an interpretation is

with x being a binary string, that are hard to compute.
An additional point is that the complexity of lY as a

trivial and is not rich in content, because for each string
X, (Pperebor equals P(X), the length of the string. The point

whole and/or the complexity of the set I’+ = (X 1 I’(x) is that tape estimate is too rough for moderately
= 1) from the splitting T-, I‘+ it induces, is precisely complex algorithms; and therefore it seems that in such
characterized (hence the term optimal computations) cases, time-complexity is more suitable. On the other
by the space function P required to compute them. hand, the theorem shows that not only for the (Pperebor

Definition above, but for an arbitrary space function ‘P, it is possible

1. P is optimal on I‘+ (respectively, r-1 iff: to create a similar splitting; and what is more, the

(a) There is a computation of the whole T with regular set R is a subset of I’;.

space complexity Cp. Note. In Trakhtenbrot (1973b) such a splitting for
(b) P-hardness: For each computation of T with an arbitrary space function Cp is described via the
some space complexity $, there exists a constant following modification of the splitting in Task 5:
c such that Vx (x E T’ (respectively, I’-) + 1. In the definition of K{(X), the function pU is
G(x) 2 ‘p(x)lc). assumed to measure space complexity.

2. Cp is optimal on I’ iff it is optimal on both I’+ 2. I-I, = (x 1 KS(x) I (P(x)].
and I?. In this case the solution of the modified Task 5 by

Remark. Note that P-hardness of I’+ implies also perebor is within the space complexity P, and P is
P-hardness for arbitrary recursive subsets of I’+. optimal on II,‘. Unfortunately, this idea does not work
Hence, the intuition under condition (b) is that I’+ for Task 5 in the case of time complexity. This is not
(respectively, r-1 is P-immune. only because “tape complexity is too rough for mod-

In the constructions under consideration, hardness erately complex algorithms,” as mentioned earlier, but
of computation does not happen because of a “com- also because tape complexity is too rough to grasp the
plex” or “random” pattern of zeros and ones in their gap between deterministic and nondeterministic com-
successive values. In fact, for an arbitrarily slowly putations. Hence, it became clear that time complexity
increasing recursive function A(n), one can choose r was to be used.
such that the number of arguments of length n for Meanwhile, I began to feel that another interpre-
which r equals zero (its census function, see below) tation of perebor was worth considering. Again, let us
does not exceed X(n). Hence, r can be approximated look at how the computation of L(f) is performed by

394 * Annals of the History of Computing, Volume 6, Number 4, October 1984

perebor, through scanning all possible circuits and
querying

+(a,) = f ? (a(!&) = f ? . . . (16)

until the first adequate circuit is discovered. Inciden-
tally, in this situation checking +(Q,) = f is easy, and
hence the inefficiency of the perebor algorithm as a
whole results from the enormous number of cases that
have to be checked. Now suppose that in some other
task checking happens to be very hard, even in com-
parison to the computational work needed for search-
ing through the possible cases. Should we nevertheless
identify the computational complexity of the perebor
algorithm as the complexity of its “searching” com-
ponent, neglecting the expensive “checking” compo-
nent? A reasonable answer seemed to be “Yes.” In
other words, it seemed that the essence of perebor is
in the complexity of interaction with the “checking”
mechanism, as opposed to the complexity of the check-
ing itself. This can be formalized in terms of oracle
machines or reduction algorithms; in this view, the
inevitability of perebor is to be interpreted in terms of
the computational complexity of the reduction pro-
cess. This idea resulted in the following conjecture
about the impossibility of eliminating perebor in the
task of computing a function relative to its graph:
Given a total function f that maps binary strings into
binary strings, consider Turing machines to compute
f that are supplied with the oracle G that delivers (at
no cost!) the correct answers to question “f(x) = y?“’
Among them is a suitable machine Mperebor that incor-
porates the perebor strategy appropriately and com-
putes f(x) by addressing the oracle with the questions

f(x) = B(O)?, f(x) = B(l)?, . . .)

f(x) = B(i)?. . . (17)

where B(i) is the ith binary string in lexicographical
order. Hence, in computing the value of f(x), the
machine MPrebor spends about f”(x) steps, where f(x)
denotes the natural number represented by the string
f(x). I conjectured in 1966 that for a broad spectrum
of functions f, no other oracle machine M can perform
the computation essentially faster. As to the “graph

predicates” G(x,y) z f(x) = y of such functions, it
was conjectured that they would not be too hard to
compute.

Dekhtiar (1969) proved the conjecture for different
versions of what “essentially faster” should mean. For
example, it turns out that in many cases Mperebor is
optimal up to a multiplicative constant; that is, for

1 r,y may vary, but f is always the same function under considera-
tion.

B. A. Trakhtenbrot - Perebor

every other oracle machine M, there exists a constant
C(M) such that

Vx (tdx) 2 C(M) . f”(x)) (18)

On the other hand, it is quite obvious that if nonde-
terministic oracle machines are allowed, the compu-
tation of the string f(x) is performable in P (f(x))
steps-that is, in just as many steps as one needs to
write down the correctly guessed value of f(x).

Clearly, there is a considerable gap between the
lower estimate C . f(x) for deterministic machines
and the upper estimate P (f(x)) for nondeterministic
ones, because P u(x)) is approximately log(f(x)). In
connection with this remark, it is worth noting that
Dekhtiar’s construction, in particular, produces func-
tions f that obey (18) and in addition have the follow-
ing properties:

1. f is polynomially increasing; that is, for suitable
c and k,

vx (P(f(x)) 5 c . (p(X))9 (19)
2. P (f(x)) is not neglectably small in comparison

with P(X).

lim sup P(f(x))/P(x) # 0 (20)

At that time, the terminology concerning P reducibil-
ity and NP problems was not yet in use; nevertheless,
it seems instructive to make some comments just in
these terms. Property (19) implies that the function f
is computable in polynomial time by a nondetermin-
istic machine with the oracle G that supplies answers
to questions “f(x) = y?” On the other hand, properties
(18) and (20) imply that for no machine with the
oracle G is the time complexity polynomial. Hence,
relative to the oracle G, the function f is in NP - P;
in other words, NP # P as far as computations with
oracles are concerned for single-valued functions.
Usually the “P = NP?” question is formulated in terms
of set decidability (and not in terms of function com-
putation as in the preceding). 14 is quite obvious,
though, that f E NP - P implies G E NP - P, where

(X,Y) E 6 Zf(x) 5 Y.

To summarize, Dekhtiar’s construction includes the
proof of the relativized version of the NP # P conjec-
ture. For the first time, this version was explicitly
announced by Baker, Gill, and Solovay (1975), to-
gether with another theorem that claims the relativ-
ized version of the NP = P conjecture. The intention
was to give some evidence to the possibility that
neither NP # P nor NP = P is provable in common
formalized systems. As to my conjecture about the
computation of a function relative to its graph and
Dekhtiar’s proof, they had nothing to do at that time
with the ambitious hopes to prove the independence

Annals of the Hlstoty of Computing, Volume 6, Number 4, October 1984 - 3%

B. A. Trakhtenbrot - Perebor

of the NP # P conjecture. As a matter of fact, I then appreciated in these spheres, but they did not produce
believed (and to some extent I do even now) that the such a sensation as Karp’s work had in the United
essence of perebor is adequately reflected by the com- States. In Novosibirsk we only learned about Levin’s
plexity of such relative computations that use search- results in April of 1972. At this time Levin had just
ing through the sequence of all binary strings. Hence, completed his Ph.D. thesis (under Kolmogorov’s guid-
being confident that the true problem is being consid- ante), “On the Algorithmic Approach to Probability
ered (and not its relativization!), I had no stimulant Theory and Information Theory.” In fact, the reason
to look for models in which perebor could be elimi- for Levin’s visit to us that spring was to promote his
nated. thesis, then under consideration in the Novosibirsk

On the other hand, there was some impression that Institute of Mathematics. In connection with this
Dekhtiar’s results might be improved and generalized promotion Barzdin arrived at the same time from
with respect to the following two points. Riga. I remember that he called me from the hotel

1. Complexity of the Graph. The construction by with excitement, saying, “Just now Levin told me
diagonalization produced a predicate G(x,y) z about his new results; it is a turning point in the topics
f(x) = y computable within exponential time, but it ofperebor!” During Levin’s lecture in our seminar, the
seemed likely that one could manage with functions f audience recognized that something very important
for which the graph G(r,y) is computable in polynom- was happening; in fact, we were witness to the start
ial time. of the “NP era”!

2. Ordering of the Strings. No justification was Levin’s interest in perebor was stimulated by two
evident as to why one had to use in perebor the factors: (1) The earlier investigations and discussions
ordering of strings fixed once and for all by lexico- on this topic in the U.S.S.R.; this is explicitly reflected
graphical ordering as in (17) or by some other way. in the bibliography to his paper (Levin 1973), which
On the contrary, it seemed natural that the ordering was submitted in June 1972. (2) The task of the
must take account of x-that is, that it must vary as computation of Kolmogorov complexity under
x varies. bounded time-that is, essentially the constructive

Questions of this sort were still under consideration version of Task 5.
when dramatic events occurred that threw a fresh Although Levin’s 1973 paper is laconic (as are Lev-
light on the problem. In 1971 S. Cook and L. Levin in’s publications in general), the formulations are
independently elaborated a new approach to the prob- absolutely crisp in the Russian original. Unfortu-
lem that resulted in the discovery of complete NP nately, the English translation is awkward and con-
problems. tains misrepresented and confusing formulations.

Cook (1971) proved SAT to be NP complete; only [Note: The translation is reprinted in the Appendix
after Karp (1972) showed many important combina- of this article.] Six tasks are considered, among them
torial problems to be NP complete, were these ideas a part coinciding with Karp’s and a part being differ-
and results fully appreciated and produced a real sen- ent; then their universality is stated in a form that is
sation in the United States. This work became avail- somewhat stronger than in the sense of Cook-Karp.
able in the U.S.S.R. no earlier than 1973. In any case, Naturally, the new approach promoted a revision of
at the Conference on Complexity Theory and Devel- the former views on perebor and especially a reevalu-
opment of the Foundations of Information Theory, ation of some questions and conjectures in the context
dedicated to the 70th birthday of A. N. Kolmogorov of the fundamental “NP = P?” question. Conjecture
(Tsakhkadzor, March 1973), the audience was still 1 on the complexity of the graph implies NP # P;
ignorant about the brilliant contributions of Cook and therefore, it is not easier to prove than the original
Karp. Meanwhile in 1971, Levin obtained similar re- conjecture NP # P. Let us confine ourselves to some
suits, although he used somewhat different terminol- remarks concerning the status of Tasks 4-5 in view of
ogy-for example, “universal perebor problems” in- the new situation.
stead of “complete NP problems.” Clearly, the existential versions of Tasks 4-5 are

Because in the West it is still not too clear exactly NP problems. The conjecture is that they are not
what Levin did and when he did it, I feel obliged to solvable in polynomial time, and moreover that the
give more details of this story. Levin reported his dense P,’ is immune in the following precise sense:
results in 1971 in Moscow (Kolmogorov’s seminar at Pz contains no subset that is decidable in polynomial
Moscow University and Markov’s seminar at the time. Note that neither in Levin’s and Cook’s papers,
Computing Center of the U.S.S.R. Academy of Sci- nor in later works, were Tasks 4-5 proved to be NP
ences) and in Leningrad (the Leningrad section of the complete. Moreover, in light of investigations started
Steklov Mathematical Institute). The results were by A. Meyer and J. Hartmanis, it is highly unlikely

396 l Annals of the History of Computing, Volume 6, Number 4, October 1984

that they will be proved to be such for some time.
These investigations concern the correlation between
NP sets, thin sets, and thick sets; they remind us of
the “frequential effect” of Tasks 4-5 that attracted us
in the U.S.S.R. They culminated in Mahaney (1980),
with the following result: if NP # P, then no complete
NP set may be sparse. Here, sparseness of a set S
means that the “census fuhction” X(n), defined as the
number of binary strings in S of size up to n, is
bounded by some polynomial of n. Note that in spec-
ifying the “frequential effect,” we formerly used other
versions of sparseness-for example, the density of 0
in P; or, as in Trakhtenbrot (1965), the fact that for
I’;, h(n) is bounded by some (arbitrarily) slowly in-
creasing recursive function.

Besides the NP machinery, Levin (1973) has an-
other result (Theorem 2) that unfortunately did not
attract the attention it deserved. Certainly, one reason
was that people were too struck by the main result-
the discovery of complete NP problems. Theorem 2
deals with the constructive version of NP problems
(see Introduction) and claims:

For any perebor problem A (XJ) there exists an algorithm
that solves it in time that is optimal up to multiplication
by a constant and the addition of a number [that is
polynomially] comparable with the length of z.

Note that optimality is stated only for those X’S for
which there exists a suitable y, and nothing is claimed
for the other ones. (An open question promoted by
Hartmanis is whether an algorithm exists that is
optimal for both the affirmative and negative cases.)
Unfortunately, there is no description of the optimal
algorithm in Levin (1973), which is perhaps another
reason that Theorem 2 was not fully appreciated. As
a matter of fact, we never knew in Novosibirsk of
Levin’s algorithm, and that is why Sazonov later pub-
lished (1980) an algorithm of his own. Levin’s original
idea as seen in Levin (1980) was that the optimal way
to find the y for a given x was to search via perebor
through the sequence of all binary strings. Unlike the
“traditional” perebor, one has to abandon the fixed
ordering of the strings (as, for example, in (17)) with
respect to their increasing lengths; instead, the strings
y are to be checked in the increasing order of Kt(y/
x)-the complexity of y relative to X, which is defined
as follows.

WY/x) Z minII + log L(w) : 4p,x) = ~1

It equals the minimal sum of the length of the program
p and the logarithm of the time it spends, including
the time for checking A(x,y). Here, u performs the
decoding relative to x, and, as in the definition of
Kolmogorov complexity, it can be chosen to be opti-
mal.

B. A. Trakhtenbrot - Perebor

Sazonov (1980) used a similar idea of “polynomially
optimal” ordering of the strings to be checked. Hence,
the original intuitive idea of perebor as a search
through all the strings is rehabilitiated; moreover,
perebor is proved to be optimal and in this sense
inevitable. Of course, its precise computational com-
plexity remains unknown; in nontrivial cases, it de-
pends on the “NP = P?” question.

Epilogue

In the decade after the Cook-Karp-Levin discovery,
the “P = NP?” problem became one of the most
popular superproblems in theoretical computer sci-
ence. It is beyond the scope of this paper to survey the
respective development and the contributions of many
outstanding computer scientists. I shall just make two
remarks that are related to the story I have told.

The first concerns the participants in the perebor
controversy. Have their views changed? There is no
evidence that this has happened. Clearly, the adher-
ents of the algorithmic approach to complexity inter-
preted the current developments in the area as a
confirmation of their correctness. On the other hand,
there was no formal reaction by their opponents on
this topic, nor did they publish new results along the
line of their own understanding ofperebor. Meanwhile,
other changes occurred. Many of the people who were
active earlier in complexity theory (including myself)
moved to other research fields, particularly to what is
called in the U.S.S.R. “theoretical programming.”
Moreover, some of them “moved” in the literal sense;
the participants of the story are now dispersed over
different continents.

The final remark is about independence results in
computer science-a direction of research that seems
particularly significant. Recall that the first attempt
in this direction (Hartmanis and Hopcroft 1976) dis-
covered that in any sufficiently strong axiomatic sys-
tem Ax, some special version of P = NP is independent
of Ax. Yet this version looked somewhat artificial;
later efforts (De Millo and Lipton 1980; Sazonov 1980)
were dedicated to direct and natural formulations of
the original P = NP problem in the axiomatic systems
under consideration. Actually, activities of this sort
outgrew the primary “P = NP?” problem; they concern
both the technical analysis of mathematical and logi-
cal means and the more fundamental analysis of math-
ematical abstractions that are relevant to computer
science.

It is worth noting that the importance of such an
approach was advocated in the U.S.S.R. even prior to
the “NP era.” As early as the 1950s Liapunov argued
that, hard problems in theoretical cybernetics need an

Annals of the History of Computing, Volume 6, Number 4, October 1984 - 3%’

B. A. Trakhtenbrot * Perebor

analysis in the spirit of descriptive set theory and
foundations of mathematics. In the late 1960s Barzdin
supported similar arguments with respect to provabil-
ity of nontrivial lower bounds for the complexity of
computations. He conjectured that they may happen
to be independent of the axioms that computer sci-
entists really have in mind.

Perhaps the most impressive repercussions of the
impasse with the “P = NP?” problem are the inten-
sified efforts to clarify the methods and axioms that
computer science relies on or should rely on (see
Joseph and Young 1981). I share the widely accepted
opinion on the importance of this trend, and I hope
that essential progress will be achieved in this area.

Acknowledgments

Hartmanis, J., and J. Hopcroft. 1976. Independence results
in computer science. ACM SIGACT News 8,4,13-24.

Hartmanis, J. 1978. “Feasible Computations and Provable
Complexity Properties.” Regional Conference Series in
Applied Mathematics. Philadelphia, Arrowsmith, 62 pp.

Hartmanis, J. January 1981. Observations about the devel-
opment of theoretical computer science. Annals of the
History of Computing, Volume 3, Number 1, pp. 42-51.

Joseph, D., and P. Young. 1981. Independence results in
computer science? J. Computer and System Sciences 23,
205-222.

Karp, R. M. 1972. “Reducibility Among Combinatorial Prob-
lems.” In R. E. Miller and J. Thatcher (eds.), Complexity
of Computer Computations, New York, Plenum Press, pp.
85-104.

Khachijan, L. 1979. A polynomial algorithm for linear pro-
gramming. Dokl. A.N. SSSR 244, 1093-1096 (Russian).

Kolmogorov, A. 1965. Three approaches to the definition of
the concept of “the quantity of information.” Problemy
Peredachi Informacii 1, 3-11 (Russian).

It was Juris Hartmanis’s idea that I should prepare a Kuzmin, V. 1965. Realization of boolean functions by auto-

paper on this topic for the Annals of the History of
mata, normal algorithms and Turing machines. Problemy

Computing. I benefited much from his own Annals
Kibernetiki 13, 75-96, Moscow, Nauka (Russian).

Landweber, L., R. Lipton, and E. Robertson. 1981. On the
paDer as a model of “a subjective. historical account structure of sets in NP and other comnlexitv classes.
_ _ I

Theoretical Computer Science 15,181-200: - of some developments in . . . theoretical computer
science in which I participated” (Hartmanis 1981). Y. Leuw, K., F. Moore, and C. Shannon. 1956. “Computability

Gurevich, A. Meyer, and anonymous referees contrib-
on Stochastic Machines.” In C. Shannon and J. McCarthy

uted valuable remarks and improvements. Z. Galil, M.
(eds.), Automata Studies, Princeton, Princeton University
Press.

Sharir, and A. Yehudai did their best to remove the Levin, L. 1973. Universal sequential search problems. Probl.
traces of my poor English and to polish the text. It is Pered. Inform IX, 3; trans. Probl. Information Transmis-

both a duty and a pleasure to express my gratitude to sion 9, 3, 265-266.

all of these colleagues.
Levin, L. 1981. “The Randomness Conservation Laws: In-

formation and Independence in Mathematics.” Technical
Report, MIT & Boston University, pp. l-22.

REFERENCES Lupanov, 0. 1958. On the synthesis of switching circuits.
Dokl. A.N. SSSR 119, 1, 23-26 (Russian).

Adelson-Velski, G., V. Arlazarov, and M. Donskoi. 1976. Mahaney, S. R. 1980. Sparse complete sets for NP, solution
Programirovanie Igr (Programming of Games). Moscow, of a conjecture of Berman and Hartmanis. Proc. 21st
Nauka, 256 pp. (Russian). Symposium on Foundations of Computer Science, pp. 54-

Agafonov, V. 1969. “On Algorithms, Frequency and Ran- 60.
domness.” Ph.D. dissertation, Novosibirsk Institute of Markov, A. 1964. On normal algorithms, that compute boo-
Mathematics (Russian). lean functions. Dokl. A.N. SSSR; trans. Soviet Math. Dokl.

Baker, T., J. Gill, and R. Solovay. 1975. Relativizations of 157, 2, 262-264.
the P=NP question. SIAM J. Computing 4,4, 431-442. McNaughton, R. 1961. The Theory of Automata, a Survey.

Barzdin, Y. 1969. On computability by probabilistic ma- New York, Academic Press, pp. 379-421.
chines. Dokl. A.N. SSSR 189, 4; trans. Soviet Math Dokl. Meyer, A., and F. McCreight. 1971. Computationally com-
10,6, 146441465. plex and pseudorandom zero-one valued functions. Inter-

Barzdin, Y. 1970. On the relative frequency of solutions of national Symposium on Theory of Machines and Compu-
algorithmically unsolvable mass problems. Dokl. A.N. tations. New York, Academic Press, pp. 19-42.
SSSR 191, 5; trans. Soviet Math. Dokl. 11, 2, 459-462. Petri, N. 1969. The complexity of algorithms and their

Chaitin, G. 1966. On the length of programs for computing operating time. Dokl. A.N. SSSR 186, 30-31; trans. Soviet
finite binary sequences. JACM 13, 547-569. Math. Dokl.

Cook, S. A. 1971. The complexity of theorem proving pro- Rabin, M. 0. 1960. “Degree of Difficulty of Computing a
cedures. Proc. 3d Annual ACM Symposium on Theory of Function and a Partial Ordering of Recursive Sets.!’ Tech-
Computing, pp. 151-158. nical Report No. 3, Jerusalem, Hebrew University.

Dekhtiar, M. 1969. On the impossibility of eliminating PER- Sazonov, Y. 1980. A logical approach to the problem
EBOR in computing a function relative to its graph. Dokl. “P=NP?” MFCS, Lecture Notes in Computer Science No.
A.N. SSSR 189, 4, 748-751; trans. Soviet Math Dokl. 14, 88, New York, Springer-Verlag, pp. 562-575.
1146-1148. Solomonoff, R, 1964. A formal theory of inductive inference.

De Millo, R., and R. Lipton. 1980. The consistency of Information and Control 7, 1, 1-22.
“P=NP” and related problems with fragments of number Trakhtenbrot, B. 1956. Signalizing functions and tabular
theory. Proc. 12th ACM Symposium on Theory of Com- operators. Trans. Penza Pedagogical Institute, No. 4, pp.
puting, pp. 45-57. 75-87 (Russian).

398 * Annals Of the History of Computing, Volume 6, Number 4, October I 984

B. A. Trakhtenbrot * Perebor

Trakhtenbrot, B. 1963. On the frequency computations of
recursive functions. Algebra i Logika 2, 1, 25-32.

Trakhtenbrot, B. 1965. Optimal computations and the fre-
quential Yablonski-effect. Algebra i Logika 4, 5, 79-83.

Trakhtenbrot, B. 1973a. Frequency computations. Trudy
Mathem. Inst. Im Steklova; trans. Proc. Steklov Inst.
Math., 125, 118-127.

Trakhtenbrot, B. 19736. Formalization of some notions
in terms of computational complexity. Proc. Intern.
Congress for Logic Methodology and Philosophy of Science
(1971), Studies in Logic and Foundations of Mathematics,
Amsterdam, North-Holland, Vol. 74, pp. 205-214.

Trakhtenbrot, B. 1975. On problems solvable by successive
trial. MFCS 75, Marianske Lazne, Lecture Notes in Com-
puter Science, Vol. 32, New York, Springer-Verlag, pp.
125-138.

Yablonski, S. 1959a. On the impossibility of eliminating
PEREBOR in solving some problems of circuit theory.
Dokl. A.N. SSSR 124, 44-41; trans. Soviet Math. Dokl.

Yablonski, S. 19596. Algorithmic difficulties in the synthesis
of minimal contact networks. Problemy Kibernetiki 2,
Moscow, Fizmatgiz, pp. 75-121 (Russian).

Yanovskaia, S. 1959. Mathematical logic and fundamentals
of mathematics. Mathematics in the USSR for 40 Years,
Moscow, Fizmatgiz, pp. 13-120 (Russian).

Zhuravlev, Y. 1960. On the impossibility of constructing
minimal disjunctive normal forms for boolean functions
by algorithms of certain class. Dokl. A.N. SSSR 132, 504-
506; trans. Soviet Math. Dokl.

Zvonkin, A., and L. Levin. 1970. The complexity of finite
objects and the development of the concepts of informa-
tion and randomness by means of the theory of algorithms.
Russian Math. Surveys 25, 6, 83-124.

APPENDIX

The following translation (0 Plenum Publishing Corpo- 7, 1972). The changes shown in brackets (-- means
ration, reprinted here with permission) is from “Prob- delete; otherwise insert) are those suggested by Trakh-
lemy Peredachi Informatsii, I’ Vol. 9, No. 3, July-Septem- tenbrot. Changes originally made by Levin are shown
ber 1973, pp. 115- 116 (original article submitted June in boldface.

BRIEF COMMUNICATIONS tial, and mathematicians nurture the conviction that

UNIVERSAL [s SEARCH
it is impossible to find simpler algorithms. That con-

PROBLEMS
viction has been reinforced by a number of profound
arguments (see [l, 2]), but no one has yet succeeded

L. A. Levin in proving it (for example, it has yet to be proved that

Several well-known [w] problems of the more time is required to find mathematical proofs
“ [m] search” type are discussed, and it is proved than is required to test them).
that those problems can be solved only in the time it If we assume, however, that there exists [in
takes to solve any problems of the indicated type, in general at all] some (even if artificially formulated)
general. [v] problem of the [m] search
After the concept of the algorithm had been fully type that is unsolvable by simple (in terms of the

refined, the algorithmic unsolvability of a number of volume of computations) algorithms, then it can be
classical [w] problems was proved (includ- shown that many “classical” [seque&&] search prob-

ing the problems of the identity of elements of groups, lems have the same property (including the minimi-
the homeomorphism of varieties, the solvability of the zation problem, the proof-search problem, etc.). This
Diophantine equations, etc.). These findings dis- objective comprises the [M main] results of
pensed with the question of finding a practical tech- the present note.
nique for solving the indicated problems. However, We say that functions f(n) and g(n) are comparable
the existence of algorithms for the solution of other if for some k
problems does not eliminate the analogous question,
because the volume of work mandated by those algo-

f(n) G (g(n) + 21k and g(n) s (f(n) + 2P

rithms is fantastically large. This is the situation with We give an analogous interpretation to the term “less
so-called [m] ([or] exhaustive) search prob- than or comparable with.”
lems, including: the minimization of Boolean func- Definition. A problem of the m search type
tions, the search for proofs of finite length, the deter- (or, simply, a [m] search problem) [is] a
mination of the isomorphism of graphs, etc. All of problem of the following type: “For a given x find some
these problems are solved by trivial algorithms entail- y of length comparable with the length of x such that
ing the sequential scanning of all possibilities. The A(x, y) holds,” where A(x, y) is some property to be
operating time of the algorithms, however, is exponen- tested by an algorithm whose operating time is com-

Annals of the History of Computing, Volume 6, Number 4, October 1984 l 3%

B. A. Trakhtenbrot l Perebor

parable with the length of X. (Here we understand by r(x), p(y), and s(y) operating in a time comparable
an algorithm a Kolmogorov-Uspenskii algorithm, a with the length of the argument exist such that
Turing machine algorithm, or a normal algorithm; x Ah, p(y)) = W(x), y) and A(x, Y) z W(x), S(Y))
and y are binary words.) The corresponding quasi- (i.e., given the A-problem in X, an equivalent B-prob-
[w] search problem is the problem of deter- lem in r(x) is easily constructed from it). A problem
mining whether such a y exists. to which any [e] search problem reduces is

We consider six problems of these types. The enti- called “universal.”

ties with which they are concerned are encoded in a Thus, the substance of the proof of Theorem 1 is
natural way by binary words. The particular choice of embodied in the following lemma.
natural encoding is not significant here, since they all LEMMA 1. Problems l-6 are universal
yield comparable code lengths. [e] search problems.

Problem 1. A list [gene&~% determines] a finite set The method described here [clearly] provides a
and a covering of that set by 500-element subsets.
Find a subcovering having a prescribed cardinality

means for readily obtaining results of the type of
Theorem 1 and Lemma 1 for [v many]

(determine whether such a subcovering exists). important [w] search problems. It still re-
Problem 2. A table generates a partial Boolean func- mains, however, to prove the condition stipulated in

tion. Find a disjunctive normal form of prescribed Theorem 1. A great many attempts have been made
dimensions realizing that function in [the its] do- in this direction for some time now, and a number
main [m] (determine whether such a DNF of interesting results have been obtained (see, e.g.,
exists). [3, 41). Of course, the universality of various

Problem 3. Determine whether a given formula of (-1 search problems can be tab-
the [gwe&tde propositional] calculus is deducible lished without solving the indicated problem. The
or refutable (or, equivalently, whether a given Boolean following is provable in the system of Kolmogorov-

formula is equal to a constant). Uspenskii algorithms.

Problem 4. Two graphs are given. Find a homo- THEOREM 2. For any [w]
morphism of one onto the other (determine whether search problem A(x, y) there exists an algorithm that
such a homomorphism exists). solves it in a time that is optimal up to multiplication

Problem 5. Two graphs are given. Find an isomorph- by a constant and the addition of a number compa-

ism of one into the other (onto part thereof). rable with the length of X.

Problem 6. Consider matrices composed of integers The author is deeply grateful to A. N. Kolmogorov,

from 1 to 100 and a certain stipulation as to which , B. A. Trakhtenbrot, Ya. M. Barzdin [‘ytt;-f

integers can be vertically adjacent and which can be AH&cm Alberton], and M. I. Degtyar’ for a reward-

horizontally adjacent. When the outermost integers ing discussion.

are given, continue them over the entire matrix, ob-
serving the given stipulation. LITERATURE CITED

Let f(n) be a monotonic function. 1. S. V. Yablonskii, “Algorithmic difficulties in the synthesis

THEOREM 1. If there exists [w
of minimal contact networks,” in: Problems of Cyber-

a
. . netics [in Russian], Vol. 2, Fizmatgiz, Moscow (1959),

& at all] search (quasi
b-P--l

pp. 75-121.
’] search) problem unsolvable in a time 2. Yu. I. Zhuravlev, ‘Set-theoretic methods in logic algebra,”

less than f(n) for an argument of length comparable in: Problems of Cybernetics [in Russian], Vol. 8, Fiz-
with n, then Problems l-6 also have this property. matgiz, Moscow (1962), pp. 5-44.

3. B. A. Trakhtenbrot, “Optimal computations and the par-
The idea of the proof is that Problems l-6 are so- tial Yablonskii effect,” Seminar [in Russian], Vol. 4,

called “universal 1-1 search problems.” No. 5, Nauka, SO, Novosibirsk (1965), pp. 79-93.

Definition. Let A(x, y) and B(n, y) determine, re-
4. M. L. Degtyar’, “On the impossibility of eliminating

exhaustive search in the computation of functions with
spectively, [seque&&] search problems A and B. We respect to their graphs,” Dokl. Akad. Nauk SSSR, 189,
say that problem A reduces to B if three algorithms No. 4, 748-751 (1969).

400 l Annals of the History of Computing, Volume 6, Number 4, October 1984

